The official answer is 165,000 cycles per year is too much.  That’s true and facetious at the same time, but just when we thought we’ve seen most of the reasons for short cycling, we now have one more to add to the list.  In this article you’ll see how a temperature control short cut done to make up for the lack of a defrost cycle clock led to a setup that caused this Heatcraft HyperCore walk-in condenser unit to cycle about 9,900 times more per month than it should have.

Key Concepts:
- Short cycling can be caused by a number of problems, control design being one of them.
– Fixing detrimental operational behaviors can add years of life to a machine and save maintenance problems in the meantime.

At this point it would be very hard for us or the customer to know when this bad control setup happened since no monitoring had been done with the condenser unit and the walk-in cooler itself had not lost control of the temperature.  It’s quite likely they may have inherited this condenser and evaporator unit set up when they leased the space.  But let’s back up.

When we started monitoring this unit back in August we knew right away that it was short cycling.  This is the first full day of monitoring and it was cycling over 400 per day.

Heatcraft HyperCore short cycling caused by control workaround

Heatcraft HyperCore short cycling caused by control workaround

Notice how dark the chart gets.  When you see more dark than light area in the chart you not only have a lot of run time, you also have a lot of cycles as the graph is showing.  It’s quite easy to visualize this fault without the benefit of Virtjoule’s automated alerts on cycle maximums.

This is the chart of a different Heatcraft HyperCore that we’re monitoring and it’s prototypical of what we see with most walk-in condenser units.  It’s quickly apparent that this unit is not cycling as many times as the one above.

Virtjoule chart of a normally operating Heatcraft HyperCore

Virtjoule chart of a normally operating Heatcraft HyperCore

Is it time to make the call?

When do you know it’s time to call someone to repair the machine?  They had not lost control of the temperature in the cooler.  In this case it really is a business decision since there is no imminent crisis.  But consider this, a newly installed compressor for a Heatcraft Hypercore has cost this customer $2,200 on a different unit.  They do have a serious financial incentive to avoid a $2,200 replacement and whatever interruption it causes to their business or distraction it creates for their store managers.

I consulted with a local commercial HVAC and refrigeration company in Boulder County, Timberline Mechanical.  Timberline does commercial HVAC and refrigeration for some of the larger food manufacturers in Boulder County.  Founder and president, John Kuepper, was able to validate that this behavior is detrimental.  One of their rules-of-thumb is that if a machine is cycling more than five times per hour then it’s short cycling.  If it’s cycling six times an hour then it’s probably not worth a trip.

In this case this unit was cycling 18-20 times per hour.  It was turning on for about a minute and shutting down for about two minutes before coming back on again.  Start-to-start cycle times were averaging about three minutes and runtimes during the cycle were averaging about a minute.  Timberline is saying that start-to-start cycle times shouldn’t really go much less than 12 minutes.

With that rule-of-thumb in mind, this condenser unit was cycling four times more than it should have been.

What does it mean to the owner/operator of this unit?  

This unit might continue to operate for quite a while into the future without needing a repair, but when it does it’s going to be a huge bill.  It’s quite possible that if this unit was cycling normally that the customer may never have to replace the compressor while they’re leasing the space.  While under their lease they are contractually responsible for maintenance and anything that happens to those machines.  A 10 year lifetime machine is reduced to just two to three years, easily within the time span of a commercial lease.  If they have inherited this machine with time already on it, the expensive failure could come at any time and would be their problem, not the landlord or the previous operator.

The Problem

Enough with the suspense of what was actually happening.  Timberline Mechanical was called to take a look after the current service had just given the unit a clean bill of health after months of this behavior while Virtjoule was still saying it was short cycling.  What was found was hair raising for any refrigeration technician.  This unit did not have a thermostat or defrost clock installed.  Instead someone had gotten a Johnson Controls bulb thermostat, set the set point to 35 degrees and then embedded it into the evaporator part of the split system in the cooler.  The idea was as soon as it got cooler than 35 degrees it would shut down the evaporator.

I don’t know where to start with this one.  It worked only because the condenser unit was still running well.  It worked only because it was an extremely clumsy and inefficient way of getting what amounted to a nearly continuous defrost cycle.  Of course this worked at the expense of a very expensive compressor.  Timberline had a more colorful opinion of this approach.  Do we even need to speculate that there could be many more installations like this?

But why the short cycle?

Let’s go deeper into why this caused a short cycle.  First and foremost, in a medium temperature cooler you might try to hold temperature in the cooler at 38 degrees.  To achieve 38 degree temperatures, temperatures out of the evaporator would have to be about 20 to 24 degrees.  If this poor man’s defrost cycle thermostat is sitting in the evaporator set at a cutout setpoint of 35 degrees then 20-24 degree cooler air is going to satisfy that set point really fast.  The evaporator will only be on for a little while.

20-24 degree evaporator air is blowing on the embedded thermostat set at 35 degrees.  It is satisfied quickly and the evaporator is cut off.  Let’s say 38-40 degree walk-in air continues to circulate through the evaporator.  At some point the thermostat will notice it’s more than 35 degrees and the evaporator comes back on.  The condenser unit on the roof is still working correctly as is the evaporator itself and cold air is coming out which is why they never lost temperature control.  The store manager is happy because there is no health problem.  But that cold air quickly satisfies the thermostat and everything shuts down again.  It’s a nasty short cycle that has continued, perhaps, for the entire life of this unit.  The people who pay the bills long term should care a lot about this behavior.

What needs to happen here is to install a basic control system of thermostat and defrost cycle clock in the cooler, not a simple thermostat buried in the evaporator.


This unit was built with a good refrigeration system.  Heatcraft HyperCores, in our experience, have been some of the most reliable condenser units we’ve monitored which was part of the reason this setup poked out like a sore thumb.  The design of this system did not include a thermostat in the cooler with a defrost clock in series to manage a proper defrost cycle.  There was a very bad choice made by the installation technician(s) that short cut basic refrigeration control design.

We may never know the real reason this unit was designed without the proper temperature and defrost controls, or for that matter how many more installations there are like this one.  However, with the current setup the customer could have to replace a compressor prematurely only to have to do it again and again, perhaps even blaming Heatcraft products, and never know why they have such a lemon.  The lemon in this case was the control design which affected everything about how the system operated.

Virtjoule was quickly able to pinpoint the short cycling behavior of this unit and fixing it could easily add years to the lifespan of this machine, avoiding large expenses, compared to its previous operation.

Heatcraft HyperCore condenser unit for walk-in refrigerator

Virtjoule monitored Heatcraft HyperCore condenser unit for walk-in refrigerator

[Randy Cox - CEO and co-founder of Virtjoule - He is the software designer and analytics engineering for Virtjoule Sense sensors. He studied Chemical Engineering and Petroleum Refining at the Colorado School of Mines. You may contact Randy at: randy at virtjoule dot com]

Print Friendly

An economizer is a set of controls and dampers, usually fitted to a rooftop package unit, that can allow variable amounts of outside air into the system to supply cooling when outside air temperatures allow. This is an energy saving tactic to take advantage of “free cooling” by using cool outside air rather than running compressors and the refrigeration circuit.

With Virtjoule’s economizer opportunity metrics you can discover the following issues and opportunities:
– Identify units with economizers running refrigeration circuits when they could be cooling from outside air instead
– Compute the potential savings for an existing unit to have an economizer installed or be replaced with a unit that has a built-in economizer
– Find the total amount of time the outside environment spent below a certain temperature threshold.

An economizer is one of the most misunderstood HVAC components there is.  They can be complex, prone to failure, and controlled improperly.  What starts off to be an energy and money saving device can turn into an achilles heel of extra equipment expense, maintenance costs, and lost energy saving opportunities.

In an excellent case study recently published by the Western Cooling Efficiency Center (WCEC) at UC Davis, Davis, CA, economizer faults made up two of the top 10 most common HVAC faults.

We especially like this paper because the Virtjoule sensor got a front page picture and we were included in a feature roundup of fault detection products.  I would encourage you to take a look at the paper where Kristin Heinemeier reviews the state of standards development for fault detection, particularly as it relates to California Title 24 initiatives.

According to the WCEC report, the two main economizer failures are incorrect or sub-optimal set point and economizer damper failure.

The WCEC and CA Title 24 recommend a 75 degree set point.  That means that when outside air temperature is 75 degrees or less, the dampers for the economizer should be coming open.

There is a huge range of capability with economizers.  Some are completely manual where a building technician will manually adjust the outside air damper to a certain degree.  But to be useful, the damper position should be able to be automatically set by economizer controls.

A 75 degree set point makes sense in the dry climate of California, but there is this thing called enthalpy that affects how much good you can get out of air with a certain humidity and temperature.  It turns out that the usefulness of cool outside air goes down when the humidity of that air goes up.  That’s because enthalpy, or the total amount of heat in that air, is higher at higher humidities.

Because humidity is a measure of how much water is in gaseous form, there is extra heat content in air that has higher humidity due to the latent heat required to hold water in a gaseous form.  That heat is in addition to the sensible heat, the heat you can feel, in the air, raising the total enthalpy and heat content of the air making it harder to cool.  There is no linear relationship between temperature, humidity, and enthalpy.  It has to be experimentally determined and is the focus of the engineering field of psychrometrics  (not psychometrics…another topic, another blog).

In many parts of the country, a useful set point temperature for the economizer would have to be much lower, meaning that the outside air temperature would have to be much lower before you can take advantage of the economizer.  For warm and humid climates, an economizer may never make sense to install.

Ultimately, a good economizer is one that can select an air stream, or mix an airstream, with the lowest enthalpy, the lowest total heat, so the air going in will take less energy to cool to the desired temperature.  A good economizer will measure the enthalpy of the return air as well as the outside air by using temperature and humidity sensors.  A combination of temperature and humidity sensors are required to compute enthalpy and faulty temperature and humidity sensors are a common cause for improper economizer function.


An economizer failure will show up in a couple of ways in run time statistics that Virtjoule provides.  If the economizer is stuck closed or the set point is set too low, then Virtjoule will see compressor run time at temperatures below the desired set point.  If the economizer is stuck open, then on warm days the run time of the unit will be longer than normal for a given condition because warmer air than is called for is being fed into the RTU.  Both ends of the failure spectrum can be noticed.  What is more subtle, and something we are not chasing at this time, is figuring out whether the compressors and economizer are working together to create an optimal mix and the subtle degradations that might be shown with more specific gauges.

Let’s look at an example.  The following graph shows compressor cycles for a 40 ton McQuay on an executive office building in San Diego.  The accompanying temperature chart shows the temperature trend throughout the day.

As you can see, a significant amount of compressor time was used for cooling for several hours between 9:00 am and noon and again after 3 pm.  And that’s time when it was below 55 degrees.  Humidity levels were 45-55% during that time.  Most HVAC people will tell you that humidity doesn’t make much difference at temperatures below 55 degrees and so computing enthalpy is a waste of time…just use the air less than 55 degrees to cool all you can.

These McQuays are fitted with economizer capability.  It looks to us like it’s not being used or controlled incorrectly as outside air temperature peaked at 57 degrees and most of the day was at 55 degrees or below.  There should have been ample cool air to supply cooling for most of the day.  Given that California recommendations are to use the economizer up to 75 degrees, minimizing compressor time, it looks like a lost energy and money saving opportunity.

In tables in the Virtjoule web application, we’ve tallied 6 hrs 16 minutes of compressor time on this unit this week.  It hasn’t been too warm in San Diego this week.  But we’ve also tallied 5 hrs and 18 minutes of compressor time when the temperature was below 55 degrees.  85% of the compressor run time this week has been at the same time outside air temperature was 55 degrees or less.  It’s almost certain the economizer is not paying for itself and could use a call to check the set point, temperature and humidity sensors, and the physical operation of the dampers at various levels.


In summary, new analytics functionality in Virtjoule makes it possible to identify lost opportunities to save money and energy for machines with economizers.  It’s also possible to use this same functionality to evaluate the potential benefit if retrofitting an economizer or replacing a machine by monitoring the cooling behavior of a machine when temperatures are less than 55 degrees.

[Randy Cox - CEO and co-founder of Virtjoule - He is the software designer and analytics engineering for Virtjoule Sense sensors. He studied Chemical Engineering and Petroleum Refining at the Colorado School of Mines. You may contact Randy at: randy at virtjoule dot com]

Print Friendly

Summary:  High head pressure faults can occur on air conditioners for a number of reasons.  This article will discuss two scenarios where high head pressure faults occurred because of two distinct and common problems. 

The first problem occurred when Liebert computer room air conditioner condenser fins were blocked by cottonwood seeds.  The second example was caused by a faulty condenser fan that would not turn on. 

You will see that both instances left distinctive signatures or patterns that Virtjoule’s beat charts were able to show.  I will review the basics of the refrigeration cycle which can help you understand why these two problems caused a high head pressure fault.

Key concepts:

  • High head pressure faults leave distinctive signatures.
  • Short cycling can be an indicator of a high head pressure fault.
  • The refrigeration cycle can help you understand the probable causes.

Even though HVAC units often live on top of roofs, it doesn’t mean they are immune to the environment around them.  The first example of a high head pressure fault occurred at a customer’s data center and office building in Fort Worth, Texas.  It was the middle of June and spring was winding down and one of the hottest summers on record in Texas was beginning to bear down on the state.  Below you can see the temperature graph for that day which topped out at 105 degrees just after 4 pm.

Temperature graph for Fort Worth on June 18, 2011

Temperature graph for Fort Worth on June 18, 2011

These Liebert units can show short cycling where they will turn on for just minutes and then off again for minutes.  According to sources we’ve talked to they are designed to handle this because many customers of computer room air conditioners want to have fairly constant temperatures.

You can see from the graph below that just after 11:00 am the lines get even closer together and denser indicating that the unit is cycling on and off even more frequently.  This was not normal behavior and was the first indication that there was a problem developing.

At 3:21 pm the unit shut down completely.  There were two Liebert units providing cool air to a data center room housing about $1.5 million in equipment.  On warm days, both units are required to cool the load generated there.  A Virtjoule alert was sent to the customer who was able to get the unit back up and running before they had to take any drastic measures to reduce the load in the center by turning off machines.  This also averted the associated lack of service to their customers not to mention all the extra time it takes their IT staff to shutdown and restart a large server system.

High head pressure fault on computer room air conditioner

High head pressure fault on computer room air conditioner

What happened to cause this problem?  The Liebert control panel in the data center indicated a high head pressure fault had occurred, but no alert from that system was sent.  After our alert to the customer, their authorized Liebert representative was called out and determined that the condenser coils had been blocked by cottonwood seeds in the air getting trapped in the fins by the draft going through the condenser.  The unit was cleaned and restarted even though the unit had recently been cleaned.

The refrigeration cycle

If you had a situation that said “High head pressure fault” do you know what was really happening in the machine and what might cause it?  Let’s review the refrigeration cycle where it will be easier to understand the sources of a high head pressure fault.

Refrigeration cycle illustration

Refrigeration cycle illustration

The refrigeration cycle depends on the laws of physics for refrigerants going through a phase change from high pressure liquid to low pressure gas and back to a high pressure liquid.  So how does this high pressure liquid actually cool itself?  The answer lies in the thermal expansion valve (TX, TXV, TEV).  It controls the pressure drop from the high to the low pressure side of the refrigerant cycle.  The expansion valve is basically a constriction of the refrigerant line that accomplishes a pressure drop across the valve.  By definition if you have pressure on one side of a valve and the valve is letting fluid move, then the fluid on the other side of the valve will be at a lower pressure.

Expansion (drop in pressure) of the high pressure liquid refrigerant will flash evaporate roughly half of the refrigerant prior to it being introduced to the evaporator.  Think about water that boils more quickly when you’re at altitude (lower atmospheric pressure).  It’s pressure that is holding the refrigerant in a liquid form and when that pressure is released that mixture wants to boil.

Because this mixture is not having heat added or removed at this time, the phase change from liquid to saturated liquid/gas will cause the mixture to radically drop in temperature.  This is because energy in the form of heat is being converted to a new form or energy to support part of the refrigerant in gaseous form.

Heat is lost to the formation of the gaseous form of the refrigerant.  This heat loss is called the heat of evaporation.  It’s the amount of heat needed to change a liquid to a gas.  You can add heat to the system to create the heat of evaporation (the burner adding heat to boil water on a stove) or the heat energy required can be pulled from the original mixture or its surroundings if the pressure is low enough and there is no other source.  Since the pressure is reduced the refrigerant is going to be forced into a phase change and it will literally suck heat out of the mixture to do it causing a large drop in temperature.

Refrigerants are simply special compounds or mixtures that exhibit very specific phase changes at convenient temperatures and pressures.  Many liquids could be used as a refrigerant, but the boiling and condensation properties of those liquids don’t work well under normal cooling conditions or they are uneconomical to produce.

The expansion valve itself is not actively accepting or rejecting heat (there will be some ambient heat transfer if the valve is exposed).  When the pressure drops the mixture starts to boil and the temperature drops as the heat of evaporation is extracted to support the saturated mixture of liquid and gas.  Now the low pressure side of the expansion valve is the place where you have truly cold refrigerant.

At this point in the cycle the air conditioner wants to put this cold refrigerant through a heat exchanger and transfer heat from the air in a room back to the refrigerant.  The now low pressure, low temperature liquid/gas refrigerant mixture is sent into a heat exchanger called an evaporator.  It’s called an evaporator because the warm air from the space is passed by a fan over coils containing the refrigerant and the heat in that air is transferred to the refrigerant causing it to thoroughly boil and change completely back to a gaseous form (saturated liquid/gas to a superheated stream of vapor).

Remember that the refrigerant is at a much lower pressure now.  Like water boiling at a lower temperature at high altitude, so will the refrigerant boil or change to a gas in this lower pressure environment and in the process soak up heat.  Remember, heat always moves from hot to cold.  So heat is naturally carried from the warm air to the cold refrigerant through the interface of the coiled pipe (usually copper pipe called the coil).  The air emerges colder because the heat has been removed.  The refrigerant vapor is now holding that heat and carrying it back to the compressor to start the cycle all over again.

High Head Pressure Fault:  A Vicious Cycle

Back to the original question:  What is a high head pressure fault?

A high head pressure fault is equivalent to a high temperature fault.  There is a direct relationship between temperature and pressure for a substance in gaseous form (from thermodynamics).  If temperature goes up then pressure goes up if the volume is constant.  If you know anything about the container of the gas and if you know the pressure you can figure out the temperature.  If you know the temperature, you can figure out what the pressure is.  In this case pressure is used as the way to determine the state of the fluid after it has been compressed.  If its pressure is high then so is its temperature.

High temperatures are a killer to compressors.  If it goes too high it will literally break down the lubricant for the compressor and the compressor will destroy itself with metal on metal wear.

After the low pressure vapor coming into the compressor is compressed, its temperature rises because the pressure rises from the mechanical work done by the compressor.  Energy is added through mechanical compression and the result is a high pressure, high temperature vapor.  You are converting electrical energy to mechanical energy to thermodynamic energy ready to be unleashed again.

A high head pressure fault develops if the vapor returning to the compressor is too hot and the subsequent compressed refrigerant will also be hotter than normal.  If there is too much heat in the refrigerant then it’s possible that the next step of putting it through the condenser to throw off that heat will not fully condense the refrigerant into liquid form.  At that point you have a degenerating refrigeration cycle where the refrigerant never makes it completely to liquid form in the condenser before being sent to the expansion valve.  The expansion valve works because you have high pressure liquid being converted to a saturated mixture of gas and liquid at lower pressure.

Therefore, you can’t put a gas through an expansion valve and get the refrigerant to cool down because cooling of the refrigerant occurs when pressure is released from a liquid and it starts to become gaseous.  If it’s already mostly gas then no significant expansion or flash cooling can occur.  Soon no more heat will be absorbed and all of the refrigerant cycle will be in gaseous form.  The compressor eventually overheats and destroys itself from rapidly increasing temperatures (getting hotter because heat is still coming from the space as well as mechanical heat added by the compressors.)

So the problem with having high head pressure is that it is an indication that the refrigeration cycle is broken and there is no use in trying to exercise it further.  You are in a vicious cycle.  The unit has to shut down before it destroys the compressor and this is why most modern systems have a safety cutoff in the case of high head pressure.

What failed in order to cause a high head pressure fault?

Ultimately a high head pressure fault is caused by excessive heat in the system.  That heat could be coming from a super hot room that you’re trying to cool.  It could come from the accumulation of heat from a poorly functioning condenser unable to throw off the heat the system is picking up and many other reasons including overcharging the refrigerant.  Let’s look at some of these problems and why they lead to a high head pressure fault.

Condenser Blockage

Most high head pressure faults will be on the condenser side of the system; the unit usually on the roof or outside the building.   One of the main problems is a physical fouling of the condenser fins which restricts air flow over the coils.  If air isn’t moving well over the fins and coils then there won’t be as much heat transferred and therefore less heat is ejected from the system.

As outside temperatures rise or the internal load rises, more and more heat will need to be rejected.  It’s possible to have more heat to reject than the condenser is able to throw off.  This leads to higher temperatures and therefore higher pressures at the expansion valve.  More heat ends up in the expanded refrigerant reducing the evaporator efficiency and that leads to higher temperatures and pressures of the vapor returning to the compressor. It’s a bad cycle that only gets worse unless the heat load is dramatically reduced or the unit is shut down.

In the case of our customer’s Liebert system, cottonwood seeds began to accumulate and block the air flow across the condenser eventually causing the condenser to not keep up as temperature rose and a high head pressure fault shut down the system.  Short cycling began as it reset itself a number of times before shutting down for good when ambient air temperatures reached about 105 F.

Damaged fins

Other causes of condenser inefficiency include damaged condenser fins.  If you’ve been up close and put your hands on these fins you know they are quite easy to bend.  Once they’re bent then no air can flow over that section of the coil reducing the overall efficiency of the condenser and therefore the condenser can’t reject as much heat.  If the damage to the fins is excessive it can dramatically reduce the heat load the system can handle.

We’ve seen examples where an overzealous maintenance person has directed high pressure spray across the fins and flattened entire sections.  What started out as an operation to improve the condenser efficiency by cleaning the fins and coils ended up damaging and reducing the condenser efficiency.

Liebert Computer Room Air Conditioner with flattened condenser fins

Liebert Computer Room Air Conditioner with flattened condenser fins

The photo above is a picture of one of the Liebert units on a data center in Fort Worth that we’re monitoring.  On the left side you can see bright spots on the condenser fins.  These are small pockets of bent over fins and might have been caused by hail.

What’s more disturbing is shown on the right half of the unit where you can see large swaths of condenser fin damage where the fins are literally bent over.  This is clearly not caused by hail damage and almost certainly caused by the incorrect use of a high pressure sprayer.  You can imagine how much less efficient this condenser is and can only imagine what happened next when cottonwood seed began to get trapped against the working side of the condenser.

Refrigerant contamination or internal coil fouling

A less common cause of condenser inefficiency occurs within the condenser coils itself.  If the refrigerant has been contaminated in the past it’s possible for the coil itself to begin to plug.  This reduces the flow of refrigerant through the coil and in turn reduces the amount of heat the condenser can throw off.

Very hot room

Because high head pressure issues are caused by excess heat in the system, you may need to look at other ways heat is getting in the system.  One potential problem comes from trying to cool down a hot room.  If you have a run-of-the-mill high head pressure fault and things were running well before, then it’s probably not going to be this reason.

Applications of commercial refrigeration run into this sort of problem all the time when they start up a walk-in refrigerator or freezer for the first time.  Commercial refrigeration systems aren’t really designed to take down a heat load in a box coming from room temperature or higher.  They’re usually designed to pull much smaller quantities of heat out of a box that is already pretty cold. For this reason you will often see special start up instructions that give specific sequences on how to get a walk-in refrigerator started up; methods to slowly cool the space rather than getting it to operating temperature quickly.

Similar issues come up in commercial refrigeration if a large load of room temperature product is added to a running refrigerator.  Manufacturers of these appliances usually know how much warm product you can load into the refrigerator without causing a problem.

Refrigerant load that is overcharged

At a high level it’s easy to think that more refrigerant is better.  But if you’ve understood a number of things so far about the refrigeration cycle, then you’ll understand that more is not necessarily better.  The primary reason is that if there is too much refrigerant then the condenser itself will be flooded to some extent.

The job of the condenser is to condense the vapor to liquid and it needs to be liquified by the time it exits the condenser.  But if there is too much refrigerant then there will be too much of it in liquid form inside the condenser.  As soon as a portion of the condenser has liquid in it then that part of the condenser will not help phase change the refrigerant and the condenser is less efficient and unable to handle a higher heat load.

A flooded condenser from overcharging causes problems similar to the fins being damaged or blocked because the ability of the condenser to throw off heat has been hampered.

Failed Condenser Fan

That’s a pretty detailed look at the underpinnings of a high head pressure fault and a few common causes.  Next, let’s look at another high head pressure fault condition.  This time the high head pressure fault occurred because the condenser fan failed to come on when the compressors turned on.

Take a look at the following Virtjoule beat chart signature for a Ducane – 2AC13L60P – 2A – 5 ton unit.

High head pressure fault due to faulty condensor fan

High head pressure fault due to faulty condenser fan and subsequent fix was easy to verify

The solid part of the graph is indicating that the unit is turning on and off hundreds of times a day.  We had seen this activity as soon as the sensor was installed and it was obvious that there was a problem.

The maintenance man for this unit called his HVAC company to make a service call.  A few days later he was under the impression from them that the problem had been fixed earlier.  The signature continued to prove otherwise.  We notified the customer of the situation and suggested they shut down the unit until it could be fixed.  You can see the shut down occurred just after 10 am.  The unit was then fixed that same day and restarted about 3 pm.  It is extremely easy to verify that the maintenance was performed.

Ducane 5 ton 2AC13L60P with a bad condenser

Ducane 5 ton 2AC13L60P with a bad condenser

Short cycling can be an indicator of a high head pressure fault

This is certainly a short cycling situation and short cycling is one of the indications that the refrigeration cycle is broken.  We were not able to tell exactly why this was occurring, but without a Virtjoule sensor on the unit the second situation could have continued until the compressor was burned out.  When standing by that unit it was pretty obvious what the problem was when you could hear the compressors turn on, but the condenser fan never turned.

If the condenser fan motor or relays to turn on the fan are broken then no significant air flow will go over the condenser.  Thermodynamically this is the same thing as having blocked condenser fins or even restricted refrigeration flow inside the coil.  The condenser simply can’t operate well enough to throw off all of the heat that is required.  Eventually the cycle turns to high temperatures and pressures and the safety switch is thrown to shut down the unit.

Many of these units will reset the high head pressure fault automatically and the unit will attempt to try again.  That’s what was happening in this case.  The unit could actually run for a little bit because there was enough ambient heat rejection to keep the cycle going for just a minute or two before the high head pressure occurred again.  The unit shuts off and cools off and it starts all over again…hundreds of times a day in this case with all the associated wear and tear and wasted energy.


I should be clear that currently the Virtjoule alert system does not directly diagnose high head pressure faults.  We wouldn’t have known exactly what the cause of the problem was, but we did see that there was a serious problem developing.

In both cases presented here, even though the cause was different, there were short cycling indications directly observed and that is something that can be alerted on.  We also alerted on the fact that the computer room air conditioner shut down and the Liebert system did not send an alert.

A high head pressure fault is a low level refrigeration cycle failure that could be caused by a number of reasons.  Even the machines that are throwing those faults aren’t diagnosing the problem.

What has been useful to our customers is the ability to see that the machine is operating in an unhealthy state or not operating at all because of the problem.  Then the problem can be looked at and fixed before expensive damage or a major inconvenience occurs.

[Randy Cox - CTO and VP of Software Engineering, Virtjoule - He is the software designer and analytics engineering for Virtjoule Sense sensors.  He studied Chemical Engineering and Petroleum Refining at the Colorado School of Mines.  You may contact Randy at:  randy at virtjoule dot com]

Print Friendly


Is your package unit or split system cycling too much?  How do you know?  The correct answer is that it depends on the unit and the manufacturer.  However, common sense can play a huge role in figuring out if your machines are excessively cycling.  Finding out how often your machine is cycling and how long the cycle times are can tell you a lot about how healthy your machine is or whether you need to change your control regime. 

In this article we’ll look at a case study of a 90 ton chiller from Carrier and how we helped a customer cut over 14,000 cycles per year in normal operation even when the chiller was operated on a building automation system (BAS) with a dedicated maintenance staff.

Key concepts: Excessive cycling and compressor short cycling can be controlled.  Avoid excessive wear and tear on HVAC equipment.  Stop excessive HVAC energy consumption and expense.

Let’s set the scene.  This 90 ton Carrier chiller has normal operating hours of 6 am to 6 pm.  We could tell that its start up and shut down times were programmed correctly because it’s obvious from the Virtjoule beat chart below that the unit is running all the time between those hours.  The building was not occupied outside of 6 am to 6 pm and the owners of the building did not expect to see any unit operations in the off hours.  However, you can see from the graph below that even though there was a noticeable shutdown, the unit continued to cycle on and off throughout the night and early morning hours.

The extra cycles were typically 3-4 minutes in duration and numbered 40 or more per day and many more than that on weekends adding up to over 14,000 cycles per year of extraneous cycling and run time.  That’s 14,000+ cycles and over 700 hours of extra run time not to mention that electric motors can take up to three times the amount of electricity to start them than it takes to run them.  At common electricity rates all of this could add up to around $5,000 per year not to mention the wear and tear on a very expensive asset.

Here’s a snapshot of the run time graph for a typical day with out-of-hours cycling.  You can see out-of-hours cycling through the early morning hours up to 6:00 am and then solid operation between the hours of 6 am and 6 pm.  Out-of-hours cycling begins again at 6 pm and continues through midnight on this chart.  The excessive cycling continues until 6 am the following day.

Excessive cycles

Excessive cycles and out of hours operation on a 90 ton Carrier chiller

The following graph is how the machine operated on Saturdays and Sundays.  Two out of the seven days of the week had close to 90 extraneous short cycles.

Extra cycles and runtime on weekends when there should be none

Extra cycles and runtime on weekends when there should be none

Keep in mind that this was the main cooling unit and was operated on a building automation system.   Soon after this run time behavior was noted the building engineers were able to make control adjustments that completely eliminated the extra cycles.  Now you can see a very clean start up and shutdown of this chiller each day.  No extra cycles.  No wasted energy.  No unnecessary wear and tear.

Control problem fixed for out-of-hours operations and excessive cycles

Control problem fixed for out-of-hours operations and excessive cycles

If you’ve operated BAS before you are probably aware of how much work it can be to extract and analyze the data points that are available.  We often hear that the BAS should catch these kinds of problems, but case after case has shown us that it isn’t happening.  BAS has proven many times that it’s better at control than monitoring.  Even when it’s used for monitoring it can cost hundreds of dollars per data point to extract and then someone has to interpret and monitor the results regularly.  Maintenance organizations often have more urgent needs to attend to in their building and this sort of problem doesn’t usually cause immediate comfort problems in the building.

The steady burning of electricity and asset wear should make for a foul smell of burning money to someone in the building and so this should be a comfort problem under someone’s seat eventually.  The top maintenance organizations that we see deal with the issues of comfort, maintenance, energy conservation, and cost every day in their operations.  They like things to run well and to cost the least amount possible.  Fortunately those things usually go hand in hand.  With Virtjoule, after a 1 hr installation and setup, a few days later we had enough information to show that a change was needed.  The owners of the building were able to get their maintenance organization to make the changes and make an immediate difference on the healthy operation of this unit.

[Randy Cox - CTO and VP of Software Engineering, Virtjoule - is the software designer and analytics engineering for Virtjoule Sense sensors.  You may contact Randy at:  randy at virtjoule dot com]

Virtjoule installation on Carrier 90 ton chiller

Virtjoule installation on Carrier 90 ton chiller

Print Friendly

Summary: We’re often asked why Virtjoule HVAC vibration sensors report on a one-second interval.  Why not five minutes or even longer?  This article will cover an actual fault case we discovered on a customer site and demonstrate why a one-second update interval is beneficial for diagnosing HVAC problems such as short-cycling.

Key concepts: HVAC vibration analysis techniques, HVAC sensor reporting intervals, signal aliasing, HVAC short-cycling.

It’s fairly common to find short-cycling HVAC units, especially after we first install the Virtjoule sensor system.  They’re easy to see visually in the Virtjoule web application by looking at the sparklines for the building’s HVAC sensors.  The following is a typical sparkline of a short-cycling HVAC unit – it’s almost solidly filled with lines going from off to on and back to off:

Short cycling HVAC sparkline

Graph of Short cycling HVAC Unit

A more typical HVAC cycling pattern is shown in this sparkline:

Normal cycling HVAC

Graph of regular cycling HVAC Unit

The reason I’m using sparklines above is mainly to illustrate that the short cycling problem stands out from the visual contrast of these two graphs without regard to the actual timing of the cycle.  However, the reason it can stand out in such a simple way is because of a fairly rapid reporting interval by the sensors.

Here’s the short-cycling graph in a bit more detail – this represents about a 12 hour period of time.

24 hour short cycling HVAC waveform

Zooming in more closely, you can see the actual short-cycling wave form begin to take shape along with more detail with respect to the period of short cycling.

Closeup 1 short cycling

Another zoom level deeper:

Closeup HVAC short-cycling

And finally, a zoom level of the short-cycling waveform focusing on a single period or cycle of the HVAC unit.  From this, it’s easy to see the entire short cycling period is about two minutes.  Moreover, you can see the “click” of the HVAC unit attempting to turn on the condenser fan at about mid-way through the 10:20 mark.  The fan failed to start and a bit later, the compressors kicked on and shortly turned off, potentially due to a high head-pressure fault in the system which protects itself by shutting down the compressor.

Closeup 3 HVAC short cycling

Virtjoule-Sense sensors sample the vibrations from the HVAC unit nearly 10,000 times per second and report the average magnitude of the data over that one-second period.   If we sampled data once every minute or two minutes, we could easily miss short-cycling events such as those captured above.

A sampling period of 2 minutes could leave you believing the unit is running non-stop if the sample period happened to fall on the regular peak shown in this real-world example.  Or alternatively, a 2-minute sample could leave you believing the unit never ran at all if it happened to sample on the interval when the unit was not running between peaks.

Finally, the world is never so punctual, so the more likely scenario of sampling on a 2 minute interval is that you would see a mix of highs and lows which would show inaccurate, sporadic run time.

Using a one-second reporting interval, it’s possible to quickly capture subtle state changes in HVAC equipment and also form a very accurate picture of what’s happening within the unit.

Each HVAC unit will have a somewhat different acoustic signature when you get down to the small details of the waveform, but the overall picture of HVAC short-cycling, built on one second data, becomes very clear.

[Landon Cox - VP of Embedded Engineering, Virtjoule - is the hardware designer for Virtjoule Sense sensors.  You may contact Landon at:  landon at virtjoule dot com]

Print Friendly